Ремонт авто Уход за... Обзоры авто

Формальные языки и грамматики. Описание формальных грамматик Развитие формальных грамматик

Рассмотрим формальную грамматику, которая в какой-то степени напоминает фрагмент грамматики русского языка и задает формальный язык, состоящий из четырех русских предложений. В этой формальной грамматике используются элементы, играющие роль членов предложения или частей речи:

<предложение>

<подлежащее>

<сказуемое>

<дополнение>

<прилагательное>

<существительное>

Эти элементы заключены в угловые скобки, чтобы отличать их от слов из фактического словаря, составляющих предложения языка. В нашем примере словарь состоит из следующих пяти слов, или «символов»: V= {дом, дуб, заслоняет, старый, (точка)}. В грамматике имеются определенные правила, содержащие информацию о том, как их этих символов можно строить предложения языка. Одно из этих правил таково:

1. <предложение> ® <подлежащее> <сказуемое> <дополнение>.

Это правило интерпретируется следующим образом: «Предложение может состоять из подлежащего, за которым следует сказуемое, затем дополнение и точка». В грамматике вполне могут быть и другие правила, задающие предложения другой структуры. Однако в данной грамматике таких правил нет. Остальные правила таковы:

2. <подлежащее> ® <прилагательное> <существительное>

3. <дополнение> ® <прилагательное> <существительное>

4. <сказуемое> ® заслоняет

5. <прилагательное> ® старый

6. <существительное> ® дом

7. <существительное> ® дуб

Применим эту грамматику для порождения (или вывода) предложения.

По правилу 1 предложение имеет вид:

<предложение> 1 ® <подлежаще е> <сказуемое> <дополнение> 2 →

2 →<прилагательное><существительное> <сказуемое><дополнение > 3 →

3 →<прилагательно е><существительное> <сказуемое> <прилагательное> <существительное> 4 →Старый <существительное> <сказуемое> <прилагательно е> <существительное>

4 Старый <существительное > <сказуемое> старый <существительное >

6,7 →Старый дом <сказуемое> старыйдуб

4 → Старый домзаслоняетстарыйдуб

Таким образом, получаем готовое предложение:

Старый дом заслоняет старый дуб .

Этот вывод можно наглядно изобразить в виде дерева. Дерево вывода показывает, какие правила применялись к различным промежуточным элементам, но скрывает порядок их применения. Таким образом, можно видеть, что результирующая цепочка не зависит от порядка, в котором делались замены промежуточных элементов. Говорят, что дерево представляет собой «синтаксическую структуру» предложения.


Идея вывода показывает другие интерпретации правил, подобных правилу <подлежащее> ® <прилагательное> <существительное> . Вместо того, чтобы говорить «подлежащее это прилагательное , за которым следует существительное », можно сказать, что подлежащее «порождает» (или «из него выводятся», или «его можно заменить на») <прилагательное> <существительное>.

С помощью приведенной выше грамматики можно вывести также три других предложения, а именно:

Старый дуб заслоняет старый дом.

Старый дом заслоняет старый дом.

Старый дуб заслоняет старый дуб.

Эти предложения и предложение, выведенное раньше, и есть все предложения порождаемые данной грамматикой.

Множество, состоящее из этих четырех предложений, называется языком, который определяется данной грамматикой («порождается ею» или «выводится в ней»).

Формальная грамматика или просто грамматика в теории формальных языков - способ описания формального языка, то есть выделения некоторого подмножества из множества всех слов некоторого конечного алфавита . Различают порождающие и распознающие (или аналитические ) грамматики - первые задают правила, с помощью которых можно построить любое слово языка, а вторые позволяют по данному слову определить, входит ли оно в язык или нет.

Энциклопедичный YouTube

  • 1 / 5

    Словами языка, заданного грамматикой, являются все последовательности терминалов, выводимые (порождаемые) из начального нетерминала по правилам вывода.

    Чтобы задать грамматику, требуется задать алфавиты терминалов и нетерминалов, набор правил вывода, а также выделить в множестве нетерминалов начальный.

    Итак, грамматика определяется следующими характеристиками:

    Вывод

    Выводом называется последовательность строк, состоящих из терминалов и нетерминалов, где первой идет строка, состоящая из одного стартового нетерминала, а каждая последующая строка получена из предыдущей путём замены некоторой подстроки по одному (любому) из правил. Конечной строкой является строка, полностью состоящая из терминалов, и следовательно являющаяся словом языка.

    Существование вывода для некоторого слова является критерием его принадлежности к языку, определяемому данной грамматикой.

    Типы грамматик

    Терминальный алфавит:

    Σ {\displaystyle \Sigma } = {"0","1","2","3","4","5","6","7","8","9","+","-","*","/","(",")"}

    Нетерминальный алфавит:

    { ФОРМУЛА, ЗНАК, ЧИСЛО, ЦИФРА }

    1. ФОРМУЛА → {\displaystyle \to } ФОРМУЛА ЗНАК ФОРМУЛА (формула есть две формулы, соединенные знаком) 2. ФОРМУЛА → {\displaystyle \to } ЧИСЛО (формула есть число) 3. ФОРМУЛА → {\displaystyle \to } (ФОРМУЛА) (формула есть формула в скобках) 4. ЗНАК → {\displaystyle \to } + | - | * | / (знак есть плюс или минус, или умножить, или разделить) 5. ЧИСЛО → {\displaystyle \to } ЦИФРА (число есть цифра) 6. ЧИСЛО → {\displaystyle \to } ЧИСЛО ЦИФРА (число есть число и цифра) 7. ЦИФРА → {\displaystyle \to } 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (цифра есть 0 или 1, или... 9)

    Начальный нетерминал:

    ФОРМУЛА

    Вывод :

    Выведем формулу (12+5) с помощью перечисленных правил вывода. Для наглядности, стороны каждой замены показаны попарно, в каждой паре заменяемая часть подчеркнута.

    ФОРМУЛА → 3 {\displaystyle {\stackrel {3}{\to }}} (ФОРМУЛА) (ФОРМУЛА ) → 1 {\displaystyle {\stackrel {1}{\to }}} (ФОРМУЛА ЗНАК ФОРМУЛА ) (ФОРМУЛА ЗНАК ФОРМУЛА) → 4 {\displaystyle {\stackrel {4}{\to }}} (ФОРМУЛА + ФОРМУЛА) (ФОРМУЛА + ФОРМУЛА ) (ФОРМУЛА + ЧИСЛО ) (ФОРМУЛА + ЧИСЛО ) (ФОРМУЛА + ЦИФРА ) (ФОРМУЛА + ЦИФРА ) (ФОРМУЛА + 5 ) (ФОРМУЛА + 5) → 2 {\displaystyle {\stackrel {2}{\to }}} (ЧИСЛО + 5) (ЧИСЛО + 5) → 6 {\displaystyle {\stackrel {6}{\to }}} (ЧИСЛО ЦИФРА + 5) (ЧИСЛО ЦИФРА + 5) → 5 {\displaystyle {\stackrel {5}{\to }}} (ЦИФРА ЦИФРА + 5) (ЦИФРА ЦИФРА + 5) → 7 {\displaystyle {\stackrel {7}{\to }}} (1 ЦИФРА + 5) (1 ЦИФРА + 5) → 7 {\displaystyle {\stackrel {7}{\to }}} (1 2 + 5)
    • Tutorial

    Мотивация

    Время от времени на Хабре публикуются посты и переводные статьи, посвященные тем или иным аспектам теории формальных языков. Среди таких публикаций (не хочется указывать конкретные работы, чтобы не обижать их авторов), особенно среди тех, которые посвящены описанию различных программных инструментов обработки языков, часто встречаются неточности и путаница. Автор склонен считать, что одной из основных причин, приведших к такому прискорбному положению вещей, является недостаточный уровень понимания идей, лежащих в основании теории формальных языков.

    Этот текст задуман как популярное введение в теорию формальных языков и грамматик. Эта теория считается (и, надо сказать, справедливо) довольно сложной и запутанной. На лекциях студенты обычно скучают и экзамены тем более не вызывают энтузиазма. Поэтому и в науке не так много исследователей в этой тематике. Достаточно сказать, что за все время, с зарождения теории формальных грамматик в середине 50-х годов прошлого века и до наших дней, по этому научному направлению было выпущено всего две докторских диссертации. Одна из них была написана в конце 60-х годов Алексеем Владимировичем Гладким, вторая уже на пороге нового тысячелетия - Мати Пентусом.

    Далее в наиболее доступной форме описаны два основных понятия теории формальных языков: формальный язык и формальная грамматика. Если тест будет интересен аудитории, то автор дает торжественное обещание разродиться еще парой подобных опусов.

    Формальные языки

    Коротко говоря, формальный язык - это математическая модель реального языка. Под реальным языком здесь понимается некий способ коммуникации (общения) субъектов друг с другом. Для общения субъекты используют конечный набор знаков (символов), которые проговариваются (выписываются) в строгом временном порядке, т.е. образуют линейные последовательности. Такие последовательности обычно называют словами или предложениями. Таким образом, здесь рассматривается только т.н. коммуникативная функция языка, которая изучается с использованием математических методов. Другие функции языка здесь не изучаются и, потому, не рассматриваются.

    Чтобы лучше разобраться в том, как именно изучаются формальные языки, необходимо сначала понять, в чем заключаются особенности математических методов изучения. Согласно Колмогорову и др. (Александров А.Д., Колмогоров А.Н., Лаврентьев М.А. Математика. Ее содержание, методы и значение. Том 1. М.: Издательство Академии Наук СССР, 1956.), математический метод, к чему бы он ни применялся, всегда следует двум основным принципам:

    1. Обобщение (абстрагирование). Объекты изучения в математике - это специальные сущности, которые существуют только в математике и предназначены для изучения математиками. Математические объекты образуются путем обобщения реальных объектов. Изучая какой-нибудь объект, математик замечает только некоторые его свойства, а от остальных отвлекается. Так, абстрактный математический объект «число» может в реальности обозначать количество гусей в пруду или количество молекул в капле воды; главное, чтобы о гусях и о молекулах воды можно было
      говорить как о совокупностях. Из такой «идеализации» реальных объектов следует одно важное свойство: математика часто оперирует бесконечными совокупностями, тогда как в реальности таких совокупностей не существует.
    2. Строгость рассуждений. В науке принято для выяснения истинности того или иного рассуждения сверять их результаты с тем, что существует в действительности, т.е. проводить эксперименты. В математике этот критерий проверки рассуждения на истинность не работает. Поэтому выводы не проверяются экспериментальным путем, но принято доказывать их справедливость строгими, подчиняющимися определенным правилам, рассуждениями. Эти рассуждения называются доказательствами и доказательства служат единственным способом обоснования верности того или иного утверждения.
    Таким образом, чтобы изучать языки с помощью математических методов, необходимо сначала выделить из языка его свойства, которые представляются важными для изучения, а затем эти свойства строго определить. Полученная таким образом абстракция будет называться формальным языком - математической моделью реального языка. Содержание конкретной математической модели зависит от того, какие свойства важны для изучения, т.е. что планируется в данный момент выделить и изучать.

    В качестве известного примера такой математической абстракции можно привести модель, известную под неблагозвучным для русского уха названием «мешок слов». В этой модели исследуются тексты естественного языка (т.е. одного из тех языков, которые люди используют в процессе повседневного общения между собой). Основной объект модели мешка слов - это слово, снабженное единственным атрибутом, частотой встречаемости этого слова в исходном тексте. В модели не учитывается, как слова располагаются рядом друг с другом, только сколько раз каждое слово встречается в тексте. Мешок слов используется в машинном обучении на основе текстов в качестве одного из основных объектов изучения.

    Но в теории формальных языков представляется важным изучить законы расположения слов рядом друг с другом, т.е. синтаксические свойства текстов. Для этого модель мешка слов выглядит бедной. Поэтому формальный язык задается как множество последовательностей, составленных из элементов конечного алфавита. Определим это более строго.

    Алфавит представляет собой конечное непустое множество элементов. Эти элементы будем называть символам. Для обозначения алфавита обычно будем использовать латинское V, а для обозначения символов алфавита - начальные строчные буквы латинского алфавита. Например, выражение V = {a,b} обозначает алфавит из двух символов a и b.

    Цепочка представляет собой конечную последовательность символов. Например, abc - цепочка из трех символов. Часто при обозначении цепочек в символах используют индексы. Сами цепочки обозначают строчными символами конца греческого алфавита. Например, omega = a1...an - цепочка из n символов. Цепочка может быть пустой, т.е. не содержать ни одного символа. Такие цепочки будем обозначать греческой буквой эпсилон.

    Наконец, формальный язык L над алфавитом V - это произвольное множеств цепочек, составленных из символов алфавита V. Произвольность здесь означает тот факт, что язык может быть пустым, т.е. не иметь ни одной цепочки, так и бесконечным, т.е. составленным из бесконечного числа цепочек. Последний факт часто вызывает недоумение: разве имеются реальные языки, которые содержат бесконечное число цепочек? Вообще говоря, в природе все конечно. Но мы здесь используем бесконечность как возможность образования цепочек неограниченной длины. Например, язык, который состоит из возможных имен переменных языка программирования C++, является бесконечным. Ведь имена переменных в C++ не ограничены по длине, поэтому потенциально таких имен может быть бесконечно много. В реальности, конечно, длинные имена переменных не имеют для нас особого смысла т.к. к концу чтения такого имени уже забываешь его начало. Но в качестве потенциальной возможности задавать неограниченные по длине переменные, это свойство выглядит полезным.

    Итак, формальные языки - это просто множества цепочек, составленных из символов некоторого конечного алфавита. Но возникает вопрос: как можно задать формальный язык? Если язык конечен, то можно просто выписать все его цепочки одну за другой (конечно, можно задуматься, имеет ли смысл выписывать цепочки языка, имеющего хотя бы десять тысяч элементов и, вообще, есть ли смысл в таком выписывании?). Что делать, если язык бесконечен, как его задавать? В этот момент на сцену выходят грамматики.

    Формальные грамматики

    Способ задания языка называет грамматикой этого языка. Таким образом, грамматикой мы называем любой способ задания языка. Например, грамматика L = {a^nb^n} (здесь n - натуральное число) задает язык L, состоящий из цепочек вида ab, aabb, aaabbb и т.д. Язык L представляет собой бесконечное множество цепочек, но тем не менее, его грамматика (описание) состоит всего из 10 символов, т.е. конечна.

    Назначение грамматики - задание языка. Это задание обязательно должно быть конечным, иначе человек не будет в состоянии эту грамматику понять. Но каким образом, конечное задание описывает бесконечные совокупности? Это возможно только в том случае, если строение всех цепочек языка основано на единых принципов, которых конечное число. В примере выше в качестве такого принципа выступает следующий: «каждая цепочка языка начинается с символов a, за которыми идет столько же символов b». Если язык представляет собой бесконечную совокупность случайным образом набранных цепочек, строение которых не подчиняется единым принципам, то очевидно для такого языка нельзя придумать грамматику. И здесь еще вопрос, можно или нет считать такую совокупность языком. В целях математической строгости и единообразия подхода обычно такие совокупности языком считают.

    Итак, грамматика языка описывает законы внутреннего строения его цепочек. Такие законы обычно называют синтаксическими закономерностями. таким образом, можно перефразировать определение грамматики, как конечного способа описания синтаксических закономерностей языка. Для практики интересны не просто грамматики, но грамматики, которые могут быть заданы в рамках единого подхода (формализма или парадигмы). Иначе говоря, на основе единого языка (метаязыка) описания грамматик всех формальных языков. Тогда можно придумать алгоритм для компьютера, который будет брать на вход описание грамматики, сделанное на этом метаязыке, и что-то делать с цепочками языка.

    Такие парадигмы описания грамматик называют синтаксическими теориями. Формальная грамматика - это математическая модель грамматики, описанная в рамках какой-то синтаксической теории. Таких теорий придумано довольно много. Самый известный метаязык для задания грамматик - это, конечно, порождающие грамматики Хомского. Но имеются и другие формализмы. Один из таких них - окрестностные грамматики, будет описан чуть ниже.

    С алгоритмической точки зрения грамматики можно подразделить по способу задания языка. Имеются три основных таких способа (вида грамматик):

    • Распознающие грамматики. Такие грамматики представляют собой устройства (алгоритмы), которым на вход подается цепочка языка, а на выходе устройство печатает «Да», если цепочка принадлежит языку, и «Нет» - в противном случае.
    • Порождающие грамматики. Этот вид устройств используется для порождения цепочек языков по требованию. Образно говоря, при нажатии кнопки будет сгенерирована некоторая цепочка языка.
    • Перечисляющие грамматики. Такие грамматики печатают одну за другой все цепочки языка. Очевидно, что если язык состоит из бесконечного числа цепочек, то процесс перечисления никогда не остановится. Хотя, конечно его можно остановить принудительно в нужный момент времени, например, когда будет напечатана нужная цепочка.
    Интересным представляет вопрос о преобразовании видов грамматики друг в друга. Можно ли, имея порождающую грамматику, построить, скажем, перечисляющую? Ответ - да, можно. Для этого достаточно генерировать цепочки, упорядочив их, скажем по длине и порядку символов. Но превратить перечисляющую грамматику в распознающую в общем случае нельзя. Можно использовать следующий метод. Получив на вход цепочку, запустить процесс перечисления цепочек и ждать, напечатает ли перечисляющая грамматика эту цепочку или нет. Если такая цепочка напечатана, то заканчиваем процесс перечисления и печатаем «Да». Если цепочка принадлежит языку, то она обязательно будет напечатана и, таким образом, распознана. Но, если цепочка не принадлежит языку, то процесс распознавания будет продолжаться бесконечно. Программа распознающей грамматики зациклится. В этом смысле мощность распознающих грамматик меньше мощности порождающих и перечисляющих. Это следует иметь ввиду, когда сравнивают порождающие грамматики Хомского и распознающие машины Тьюринга.

    Окрестностные грамматики

    В середине 60-х годов советский математик Юлий Анатольевич Шрейдер предложил простой способ описания синтаксиса языков на основе т.н. окрестностных грамматик. Для каждого символа языка задается конечное число его «окрестностей» - цепочек, содержащих данный символ (центр окрестности) где-то внутри. Набор таких окрестностей для каждого символа алфавита языка называется окрестностной грамматикой. Цепочка считается принадлежащей языку, задаваемому окрестностной грамматикой, если каждый символ этой цепочки входит в нее вместе с некоторой своей окрестностью.

    В качестве примера рассмотрим язык A = {a+a, a+a+a, a+a+a+a,...} . Этот язык представляет собой простейшую модель языка арифметических выражений, где роль чисел играет символ «a», а роль операций - символ "+". Составим для этого языка окрестностную грамматику. Зададим окрестности для символа «a». Символ «a» может встречаться в цепочках языка A в трех синтаксических контекстах: вначале, между двумя символами "+" и в конце. Для обозначения начала и конца цепочки введем псевдосимвол "#". Тогда окрестности символа «a» будут следующими: #a+, +a+, +a# . Обычно для выделения центра окрестности этот символ в цепочке подчеркивается (ведь в цепочке могут быть и другие такие символы, которые не являются центром!), здесь этого делать не будем за неимением простой технической возможности. Символ "+" встречается только между двух символов «a», поэтому для него задается одна окрестность, цепочка a+a .

    Рассмотрим цепочку a+a+a и проверим, принадлежит ли она языку. Первый символ «a» цепочки входит в нее вместе с окрестностью #a+ . Второй символ "+" входит в цепочку вместе с окрестностью a+a . Подобное вхождение можно проверить и для остальных символов цепочки, т.е. данная цепочка принадлежит языку, как и следовало ожидать. Но, например, цепочка a+aa языку A не принадлежит, поскольку последний и предпоследний символы «a» не имеют окрестностей, с которыми они входят в эту цепочку.

    Не всякий язык может быть описан окрестностной грамматикой. Рассмотрим, например, язык B, цепочки которого начинаются либо с символа «0», либо с символа «1». В последнем случае далее в цепочке могут идти символы «a» и «b». Если же цепочка начинается с нуля, то далее могут идти только символы «a». Нетрудно доказать, что для этого языка нельзя придумать никакой окрестностной грамматики. Легитимность вхождения символа «b» в цепочку обусловлена ее первым символом. Для любой окрестностной грамматики, в которой задается связь между символами «b» и «1» можно будет подобрать достаточно длинную цепочку, чтобы всякая окрестность символа «b» не доставала до начала цепочки. Тогда в начало можно будет подставить символ «0» и цепочка будет принадлежать языку A, что не отвечает нашим интуитивным представлениям о синтаксическом строении цепочек этого языка.

    С другой стороны, легко можно построить конечный автомат, который распознает этот язык. Значит, класс языков, которые описываются окрестностными грамматиками, уже класса автоматных языков. Языки, задаваемые окрестностными грамматиками, будем называть шрейдеровскими. Таким образом, в иерархии языков можно выделить класс шрейдеровских языков, который является подклассом автоматных языков.

    Можно сказать, что шрейдеровские языки задают одно простое синтаксическое отношение - «быть рядом» или отношение непосредственного предшествования. Отношение дальнего предшествования (которое, очевидно, присутствует в языке B) окрестностной грамматикой задано быть не может. Но, если визуализировать синтаксические отношения в цепочках языка, то для диаграмм отношений, в которые превращаются такие цепочки, можно придумать окрестностную грамматику.

    В общем случае язык представляет собой бесконечное множество, а бесконеч- ные объекты даже задать трудно: их невозможно задать простым перечислением эле- ментов. Любой конечный механизм задания языка называется грамматикой.

    Формальный язык представляет собой множество цепочек в некотором конеч- ном алфавите. К формальным языкам можно отнести искусственные языки для обще- ния человека с машиной – языки программирования.

    Для задания описания формального языка необходимо, во-первых, указать ал- фавит, т. е. совокупность объектов, называемых символами (или буквами), каждый из которых можно воспроизводить в неограниченном количестве экземпляров (подобно обычным печатным буквам или цифрам), и, во-вторых, задать формальную граммати- ку языка, т. е. перечислить правила, по которым из символов строятся их последова- тельности, принадлежащие определяемому языку, – правильные цепочки.

    Правила формальной грамматики можно рассматривать как продукции (прави- ла вывода), то есть элементарные операции, которые, будучи применены в опреде- ленной последовательности к исходной цепочке (аксиоме), порождают лишь пра- вильные цепочки. Сама последовательность правил, использованных в процессе по- рождения некоторой цепочки, является ее выводом. Определенный таким образом язык представляет собой формальную систему.

    По способу задания правильных цепочек формальные грамматики разделяются на порождающие и распознающие. К порождающим относятся грамматики языка L,

    по которым можно построить любую «правильную» цепочку с указанием ее структу- ры и нельзя построить ни одной неправильной цепочки. Распознающая грамматика языка L – это грамматика, позволяющая установить, правильна ли произвольно вы- бранная цепочка и, если она правильна, то выяснить ее строение. Распознающая грам- матика задает критерий принадлежности произвольной цепочки данному языку.

    Формальные грамматики широко применяются в лингвистике и программиро-

    вании в связи с изучением естественных языков и языков программирования.

    Автоматные и лингвистические модели строятся на базе теории формальных грамматик, основы которой были заложены в работах Н. Хомского. Основными объ- ектами, с которыми имеет дело эта теория, являются символы, представляющие собой базовые элементы какого-либо непустого множества А любой природы, а также це- почки, построенные из этих элементов. Множество А называют также алфавитом.

    Символы будем обозначать строчными буквами латинского алфавита, а цепоч- ки – в виде ffghhh, которые будем считать ориентированными слева направо. Цепочки будем обозначать также специальными символами – прописными буквами латинско- го алфавита или греческими буквами, например:  = ffg, В = аbbа. Введем в рассмот- рение пустую цепочку , не содержащую ни одного символа.

    Длиной цепочки будем называть число символов, входящих в эту цепочку.

    Длина цепочки обозначается следующим образом:

    |  | = | ffg | = 3;

    | В | = | аbbа| = 4;

    Конкатенацией двух цепочек Х и Y называется такая цепочка Z, которая полу- чается непосредственным слиянием цепочки Х, стоящей слева, и цепочки Y, стоящей справа. Например, если X = ffg, Y = ghh, то конкатенация Х и Y – это цепочка Z = ffgghh. Обозначим операцию конкатенации символом о. Свойства этой операции

    можно записать следующим образом:

    1) свойство замкнутости:

    о: А* × А* → А*;

    2) свойство ассоциативности:

    (∀Х ∈ А*, Y ∈ A*, Z ∈ A*) [(X o Y) o Z = X o (Y o Z)],

    где через А* обозначено множество всех возможных цепочек (разумеется, бес- конечное), составленных из конечного множества А базовых элементов (символов) словаря, включая пустую цепочку ; символ х обозначает операцию декартова произ- ведения двух множеств; а X, Y, Z – произвольные цепочки, принадлежащие А*.

    Рассмотрим пару (А*, 0). С учетом перечисленных свойств операции о эта пара представляет собой полугруппу с единичным элементом  или моноид. Полугруппой в алгебре называют только множество (в данном случае А*), снабженное всюду опре- деленной ассоциативной операцией.

    Цепочка может принадлежать или не принадлежать языку L. Любое множество цепочек L ≤ А* (где А* – моноид), называется формальным языком, если это мно- жество цепочек определено на алфавите А.

    Пример 1. Пусть А – множество букв русского алфавита. Тогда множество це- почек, составленных из пяти букв, представляет собой формальный язык L1. Другой пример языка, определенного на том же алфавите – множество L2 пятибуквенных

    слов русского языка, которые можно разыскать в орфографическом словаре. Оче-

    видно L2 ⊂ L1, так как многие цепочки языка L1 не являются русскими словами.

    Пусть В и С – некоторые подмножества множества А*.

    Произведением множеств В и С называется множество D цепочек, являю-

    щихся конкатенацией цепочек из В и С, т. е.

    D = { X o Y | X ∈ B, Y ∈ C}.

    Обозначается произведение следующим образом: D = ВC.

    Рассмотрим алфавит А. Обозначим множество, состоящее из , через А0. Опре-

    делим степень алфавита как Аn = An-1 A для каждого n ≥ 1.

    Нетрудно показать, что множество всех возможных цепочек алфавита

    Такое множество называют итерацией алфавита А. Усеченной итерацией ал-

    фавита А называют

    Если X и Y – цепочки множества А*, то цепочку Х называют подцепочкой це-

    почки Y, когда существуют такие цепочки U и V из А*, что

    При этом, если U – пустая цепочка, то подцепочку Х называют головой цепоч-

    ки Y, а если V – пустая цепочка, то Х называют хвостом цепочки Y.

    Конкатенация двух цепочек X и Y обозначается ХоY или XY. Рассмотрим пары цепочек (P1, Q1), (P2, Q2), ..., (Pn, Qn) из А* х А*. Соотношениями Туэ будем называть правила, согласно которым любой це-

    почке X = U Pi V из множества А* будет ставиться в соответствие цепочка Y = U Qi V, из того же множества А* (i = 1, 2, ..., n) и наоборот. Эти соотношения приводят к так называемым ассоциативным исчислениям.

    Если цепочка Y получается из цепочки Х однократным применением одного соотношения Туэ (т. е. заменой подцепочки Pi на подцепочку Qi), будем говорить, что Х и Y являются смежными цепочками.

    Цепочка Хn соотносима с цепочкой Х0, если существует последовательность цепочек

    Х0, Х1, ..., Хn ,

    такая, что Х i-1 и Хi являются смежными цепочками.

    Пример 2. Пусть А – множество букв русского алфавита, на котором опреде-

    лим соотношение Туэ, заключающееся в праве замены любой одной буквы слова на любую другую. Тогда в последовательности цепочек МУКА, МУЗА, ЛУЗА, ЛОЗА, ПОЗА, ПОРА, ПОРТ, ТОРТ, две любые соседние цепочки являются смежными, а це- почки МУКА и ТОРТ являются соотносимыми в смысле заданных соотношений.

    Введение соотношений Туэ позволяет выделить среди множества языков опре- деленные их классы, которые используются при построении автоматно- лингвистических моделей самого различного типа.

    Соотношения Туэ являются двусторонними, если цепочка Х является смежной по отношению к цепочке Y, и наоборот, цепочка Y является смежной по отношению к

    цепочке Х. Более интересными, с точки зрения теории формальных грамматик, явля-

    ются соотношения, в которых введено направление.

    В этом случае их называют полусоотношениями Туэ или продукциями и обо-

    значают следующим образом:

    (Р1 → Q1), (P2 →Q2), ..., (Pn → Qn).

    В том случае, когда имеется набор продукций, говорят, что цепочка Y непо-

    средственно порождается из цепочки Х, и обозначается как Х ⇒ Y, если существуют такие цепочки U и V, что

    X = U Pi V, Y = U Qi V,

    а (Рi → Qi) – продукция из данного набора.

    Говорят также, что Х порождает Y.

    Если существует последовательность цепочек Х0, Х1, ..., Хn такая, что для каж-

    дого i = 1, 2, ..., n

    Х i-1 ⇒ X i ,

    то говорят, что Хn порождается из Х0 (Х0 порождает Хn), и обозначают как Х0 ⇒ * Xn. .

    Грамматики Хомского соответствуют формальным комбинаторным схемам,

    являющимся полусистемами Туэ, в основу которых положены полусоотношения Туэ

    • Tutorial

    Мотивация

    Время от времени на Хабре публикуются посты и переводные статьи, посвященные тем или иным аспектам теории формальных языков. Среди таких публикаций (не хочется указывать конкретные работы, чтобы не обижать их авторов), особенно среди тех, которые посвящены описанию различных программных инструментов обработки языков, часто встречаются неточности и путаница. Автор склонен считать, что одной из основных причин, приведших к такому прискорбному положению вещей, является недостаточный уровень понимания идей, лежащих в основании теории формальных языков.

    Этот текст задуман как популярное введение в теорию формальных языков и грамматик. Эта теория считается (и, надо сказать, справедливо) довольно сложной и запутанной. На лекциях студенты обычно скучают и экзамены тем более не вызывают энтузиазма. Поэтому и в науке не так много исследователей в этой тематике. Достаточно сказать, что за все время, с зарождения теории формальных грамматик в середине 50-х годов прошлого века и до наших дней, по этому научному направлению было выпущено всего две докторских диссертации. Одна из них была написана в конце 60-х годов Алексеем Владимировичем Гладким, вторая уже на пороге нового тысячелетия - Мати Пентусом.

    Далее в наиболее доступной форме описаны два основных понятия теории формальных языков: формальный язык и формальная грамматика. Если тест будет интересен аудитории, то автор дает торжественное обещание разродиться еще парой подобных опусов.

    Формальные языки

    Коротко говоря, формальный язык - это математическая модель реального языка. Под реальным языком здесь понимается некий способ коммуникации (общения) субъектов друг с другом. Для общения субъекты используют конечный набор знаков (символов), которые проговариваются (выписываются) в строгом временном порядке, т.е. образуют линейные последовательности. Такие последовательности обычно называют словами или предложениями. Таким образом, здесь рассматривается только т.н. коммуникативная функция языка, которая изучается с использованием математических методов. Другие функции языка здесь не изучаются и, потому, не рассматриваются.

    Чтобы лучше разобраться в том, как именно изучаются формальные языки, необходимо сначала понять, в чем заключаются особенности математических методов изучения. Согласно Колмогорову и др. (Александров А.Д., Колмогоров А.Н., Лаврентьев М.А. Математика. Ее содержание, методы и значение. Том 1. М.: Издательство Академии Наук СССР, 1956.), математический метод, к чему бы он ни применялся, всегда следует двум основным принципам:

    1. Обобщение (абстрагирование). Объекты изучения в математике - это специальные сущности, которые существуют только в математике и предназначены для изучения математиками. Математические объекты образуются путем обобщения реальных объектов. Изучая какой-нибудь объект, математик замечает только некоторые его свойства, а от остальных отвлекается. Так, абстрактный математический объект «число» может в реальности обозначать количество гусей в пруду или количество молекул в капле воды; главное, чтобы о гусях и о молекулах воды можно было
      говорить как о совокупностях. Из такой «идеализации» реальных объектов следует одно важное свойство: математика часто оперирует бесконечными совокупностями, тогда как в реальности таких совокупностей не существует.
    2. Строгость рассуждений. В науке принято для выяснения истинности того или иного рассуждения сверять их результаты с тем, что существует в действительности, т.е. проводить эксперименты. В математике этот критерий проверки рассуждения на истинность не работает. Поэтому выводы не проверяются экспериментальным путем, но принято доказывать их справедливость строгими, подчиняющимися определенным правилам, рассуждениями. Эти рассуждения называются доказательствами и доказательства служат единственным способом обоснования верности того или иного утверждения.
    Таким образом, чтобы изучать языки с помощью математических методов, необходимо сначала выделить из языка его свойства, которые представляются важными для изучения, а затем эти свойства строго определить. Полученная таким образом абстракция будет называться формальным языком - математической моделью реального языка. Содержание конкретной математической модели зависит от того, какие свойства важны для изучения, т.е. что планируется в данный момент выделить и изучать.

    В качестве известного примера такой математической абстракции можно привести модель, известную под неблагозвучным для русского уха названием «мешок слов». В этой модели исследуются тексты естественного языка (т.е. одного из тех языков, которые люди используют в процессе повседневного общения между собой). Основной объект модели мешка слов - это слово, снабженное единственным атрибутом, частотой встречаемости этого слова в исходном тексте. В модели не учитывается, как слова располагаются рядом друг с другом, только сколько раз каждое слово встречается в тексте. Мешок слов используется в машинном обучении на основе текстов в качестве одного из основных объектов изучения.

    Но в теории формальных языков представляется важным изучить законы расположения слов рядом друг с другом, т.е. синтаксические свойства текстов. Для этого модель мешка слов выглядит бедной. Поэтому формальный язык задается как множество последовательностей, составленных из элементов конечного алфавита. Определим это более строго.

    Алфавит представляет собой конечное непустое множество элементов. Эти элементы будем называть символам. Для обозначения алфавита обычно будем использовать латинское V, а для обозначения символов алфавита - начальные строчные буквы латинского алфавита. Например, выражение V = {a,b} обозначает алфавит из двух символов a и b.

    Цепочка представляет собой конечную последовательность символов. Например, abc - цепочка из трех символов. Часто при обозначении цепочек в символах используют индексы. Сами цепочки обозначают строчными символами конца греческого алфавита. Например, omega = a1...an - цепочка из n символов. Цепочка может быть пустой, т.е. не содержать ни одного символа. Такие цепочки будем обозначать греческой буквой эпсилон.

    Наконец, формальный язык L над алфавитом V - это произвольное множеств цепочек, составленных из символов алфавита V. Произвольность здесь означает тот факт, что язык может быть пустым, т.е. не иметь ни одной цепочки, так и бесконечным, т.е. составленным из бесконечного числа цепочек. Последний факт часто вызывает недоумение: разве имеются реальные языки, которые содержат бесконечное число цепочек? Вообще говоря, в природе все конечно. Но мы здесь используем бесконечность как возможность образования цепочек неограниченной длины. Например, язык, который состоит из возможных имен переменных языка программирования C++, является бесконечным. Ведь имена переменных в C++ не ограничены по длине, поэтому потенциально таких имен может быть бесконечно много. В реальности, конечно, длинные имена переменных не имеют для нас особого смысла т.к. к концу чтения такого имени уже забываешь его начало. Но в качестве потенциальной возможности задавать неограниченные по длине переменные, это свойство выглядит полезным.

    Итак, формальные языки - это просто множества цепочек, составленных из символов некоторого конечного алфавита. Но возникает вопрос: как можно задать формальный язык? Если язык конечен, то можно просто выписать все его цепочки одну за другой (конечно, можно задуматься, имеет ли смысл выписывать цепочки языка, имеющего хотя бы десять тысяч элементов и, вообще, есть ли смысл в таком выписывании?). Что делать, если язык бесконечен, как его задавать? В этот момент на сцену выходят грамматики.

    Формальные грамматики

    Способ задания языка называет грамматикой этого языка. Таким образом, грамматикой мы называем любой способ задания языка. Например, грамматика L = {a^nb^n} (здесь n - натуральное число) задает язык L, состоящий из цепочек вида ab, aabb, aaabbb и т.д. Язык L представляет собой бесконечное множество цепочек, но тем не менее, его грамматика (описание) состоит всего из 10 символов, т.е. конечна.

    Назначение грамматики - задание языка. Это задание обязательно должно быть конечным, иначе человек не будет в состоянии эту грамматику понять. Но каким образом, конечное задание описывает бесконечные совокупности? Это возможно только в том случае, если строение всех цепочек языка основано на единых принципов, которых конечное число. В примере выше в качестве такого принципа выступает следующий: «каждая цепочка языка начинается с символов a, за которыми идет столько же символов b». Если язык представляет собой бесконечную совокупность случайным образом набранных цепочек, строение которых не подчиняется единым принципам, то очевидно для такого языка нельзя придумать грамматику. И здесь еще вопрос, можно или нет считать такую совокупность языком. В целях математической строгости и единообразия подхода обычно такие совокупности языком считают.

    Итак, грамматика языка описывает законы внутреннего строения его цепочек. Такие законы обычно называют синтаксическими закономерностями. таким образом, можно перефразировать определение грамматики, как конечного способа описания синтаксических закономерностей языка. Для практики интересны не просто грамматики, но грамматики, которые могут быть заданы в рамках единого подхода (формализма или парадигмы). Иначе говоря, на основе единого языка (метаязыка) описания грамматик всех формальных языков. Тогда можно придумать алгоритм для компьютера, который будет брать на вход описание грамматики, сделанное на этом метаязыке, и что-то делать с цепочками языка.

    Такие парадигмы описания грамматик называют синтаксическими теориями. Формальная грамматика - это математическая модель грамматики, описанная в рамках какой-то синтаксической теории. Таких теорий придумано довольно много. Самый известный метаязык для задания грамматик - это, конечно, порождающие грамматики Хомского. Но имеются и другие формализмы. Один из таких них - окрестностные грамматики, будет описан чуть ниже.

    С алгоритмической точки зрения грамматики можно подразделить по способу задания языка. Имеются три основных таких способа (вида грамматик):

    • Распознающие грамматики. Такие грамматики представляют собой устройства (алгоритмы), которым на вход подается цепочка языка, а на выходе устройство печатает «Да», если цепочка принадлежит языку, и «Нет» - в противном случае.
    • Порождающие грамматики. Этот вид устройств используется для порождения цепочек языков по требованию. Образно говоря, при нажатии кнопки будет сгенерирована некоторая цепочка языка.
    • Перечисляющие грамматики. Такие грамматики печатают одну за другой все цепочки языка. Очевидно, что если язык состоит из бесконечного числа цепочек, то процесс перечисления никогда не остановится. Хотя, конечно его можно остановить принудительно в нужный момент времени, например, когда будет напечатана нужная цепочка.
    Интересным представляет вопрос о преобразовании видов грамматики друг в друга. Можно ли, имея порождающую грамматику, построить, скажем, перечисляющую? Ответ - да, можно. Для этого достаточно генерировать цепочки, упорядочив их, скажем по длине и порядку символов. Но превратить перечисляющую грамматику в распознающую в общем случае нельзя. Можно использовать следующий метод. Получив на вход цепочку, запустить процесс перечисления цепочек и ждать, напечатает ли перечисляющая грамматика эту цепочку или нет. Если такая цепочка напечатана, то заканчиваем процесс перечисления и печатаем «Да». Если цепочка принадлежит языку, то она обязательно будет напечатана и, таким образом, распознана. Но, если цепочка не принадлежит языку, то процесс распознавания будет продолжаться бесконечно. Программа распознающей грамматики зациклится. В этом смысле мощность распознающих грамматик меньше мощности порождающих и перечисляющих. Это следует иметь ввиду, когда сравнивают порождающие грамматики Хомского и распознающие машины Тьюринга.

    Окрестностные грамматики

    В середине 60-х годов советский математик Юлий Анатольевич Шрейдер предложил простой способ описания синтаксиса языков на основе т.н. окрестностных грамматик. Для каждого символа языка задается конечное число его «окрестностей» - цепочек, содержащих данный символ (центр окрестности) где-то внутри. Набор таких окрестностей для каждого символа алфавита языка называется окрестностной грамматикой. Цепочка считается принадлежащей языку, задаваемому окрестностной грамматикой, если каждый символ этой цепочки входит в нее вместе с некоторой своей окрестностью.

    В качестве примера рассмотрим язык A = {a+a, a+a+a, a+a+a+a,...} . Этот язык представляет собой простейшую модель языка арифметических выражений, где роль чисел играет символ «a», а роль операций - символ "+". Составим для этого языка окрестностную грамматику. Зададим окрестности для символа «a». Символ «a» может встречаться в цепочках языка A в трех синтаксических контекстах: вначале, между двумя символами "+" и в конце. Для обозначения начала и конца цепочки введем псевдосимвол "#". Тогда окрестности символа «a» будут следующими: #a+, +a+, +a# . Обычно для выделения центра окрестности этот символ в цепочке подчеркивается (ведь в цепочке могут быть и другие такие символы, которые не являются центром!), здесь этого делать не будем за неимением простой технической возможности. Символ "+" встречается только между двух символов «a», поэтому для него задается одна окрестность, цепочка a+a .

    Рассмотрим цепочку a+a+a и проверим, принадлежит ли она языку. Первый символ «a» цепочки входит в нее вместе с окрестностью #a+ . Второй символ "+" входит в цепочку вместе с окрестностью a+a . Подобное вхождение можно проверить и для остальных символов цепочки, т.е. данная цепочка принадлежит языку, как и следовало ожидать. Но, например, цепочка a+aa языку A не принадлежит, поскольку последний и предпоследний символы «a» не имеют окрестностей, с которыми они входят в эту цепочку.

    Не всякий язык может быть описан окрестностной грамматикой. Рассмотрим, например, язык B, цепочки которого начинаются либо с символа «0», либо с символа «1». В последнем случае далее в цепочке могут идти символы «a» и «b». Если же цепочка начинается с нуля, то далее могут идти только символы «a». Нетрудно доказать, что для этого языка нельзя придумать никакой окрестностной грамматики. Легитимность вхождения символа «b» в цепочку обусловлена ее первым символом. Для любой окрестностной грамматики, в которой задается связь между символами «b» и «1» можно будет подобрать достаточно длинную цепочку, чтобы всякая окрестность символа «b» не доставала до начала цепочки. Тогда в начало можно будет подставить символ «0» и цепочка будет принадлежать языку A, что не отвечает нашим интуитивным представлениям о синтаксическом строении цепочек этого языка.

    С другой стороны, легко можно построить конечный автомат, который распознает этот язык. Значит, класс языков, которые описываются окрестностными грамматиками, уже класса автоматных языков. Языки, задаваемые окрестностными грамматиками, будем называть шрейдеровскими. Таким образом, в иерархии языков можно выделить класс шрейдеровских языков, который является подклассом автоматных языков.

    Можно сказать, что шрейдеровские языки задают одно простое синтаксическое отношение - «быть рядом» или отношение непосредственного предшествования. Отношение дальнего предшествования (которое, очевидно, присутствует в языке B) окрестностной грамматикой задано быть не может. Но, если визуализировать синтаксические отношения в цепочках языка, то для диаграмм отношений, в которые превращаются такие цепочки, можно придумать окрестностную грамматику.